Abstract

Portal venous pressure is the result of the interplay between portal venous blood flow and the vascular resistance offered to that flow. Whether portal hypertension is maintained only by an increased portal venous resistance or also by an increased blood flow within the portal venous system is still open to speculation. To resolve these differences, splanchnic and systemic hemodynamics were evaluated in cirrhotic rats, induced by CCl4. Blood flow and portal-systemic shunting were measured by radioactive microsphere techniques. All cirrhotic rats had portal hypertension (portal venous pressure 13.5 +/- 1.1 vs. 9.0 +/- 0.5 mmHg, in normal control rats; p less than 0.01), but portal-systemic shunting in cirrhosis (31% +/- 13% vs. 0.2% +/- 0.02%; p less than 0.05) was variable, ranging from 1% to 97%. Portal venous inflow, the total blood flow within the portal system, was increased in cirrhotic rats (5.75 +/- 0.04 vs. 4.52 +/- 0.36 ml/min per 100 g; p less than 0.05). Total splanchnic arterial resistance was reduced in cirrhotic rats (3.3 +/- 0.2 vs. 5.8 +/- 0.5 dyn X s X cm-5 X 10(5); p less than 0.01). Portal venous resistance, however, was not abnormally elevated in cirrhotic rats (4.6 +/- 0.5 vs. 4.7 +/- 0.5 dyn X s X cm-5 X 10(4), p = NS). Splanchnic hemodynamics in cirrhotic rats demonstrate that portal hypertension is maintained, at least in part, by a hyperdynamic portal venous inflow. The hemodynamic data in cirrhotic rats provided evidence that supports the role of an increased portal blood flow in portal hypertension and gives a quantitative definition of splanchnic hemodynamics in intrahepatic portal hypertension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call