Abstract

The present study aimed at characterizing the effect of partial 5-HT denervation by parachloroamphetamine (PCA), a 5-HT selective neurotoxin, on forced swimming behaviour and monoamine levels in several rat brain regions. PCA was administered intraperitoneally in two independent experiments in doses of 2, 4 and 6 mg/kg and in doses 1, 2, 4 mg/kg, respectively. PCA (2 mg/kg) reduced immobility in the forced swimming test in the Experiment 1 and according to Experiment 2 this is explained by increased swimming time. Dose-dependent reductions in 5-HT and 5-HIAA levels were found in all brain regions studied, and the maximal effects were of a similar magnitude. In septum, the effect of PCA took more time to develop. The effects of the lowest dose of PCA suggest that the neurotoxin affects not only the dorsal raphe projection areas but also the fine axons which arise from the median raphe. α 2-Adrenoceptors and β-adrenoceptors in cerebral cortex were not affected by the PCA treatment. Binding affinity of the 5-HT 1A receptors was higher after all doses of PCA. On the second exposure to the forced swimming the time spent in swimming was found to be negatively and the time spent in immobile posture positively correlated with serotonin turnover in frontal cortex. The time spent in struggling on the second exposure to test was found to be negatively correlated with K D of β-adrenoceptor binding in cerebral cortex. These data suggest that partial 5-HT denervation with low doses of PCA, which elicits a specific pattern of neurodegeneration, results in an increased behavioural activity, and that the traditional interpretation of the measures in forced swimming test, despite of the test’s predictive power in revealing antidepressants acting on monoaminergic systems, is not adequate for studies on the neurochemical basis of depression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.