Abstract

Ryanodine receptor type-1 (RYR1) and Calsequestrin-1 (CASQ1) proteins, located in the sarcoplasmic reticulum (SR), are two of the main players in skeletal excitation-contraction (EC) coupling. Mutations in the human RYR1 gene (encoding for the SR Ca2+ release channel) and ablation in mice of CASQ1 (a SR Ca2+ binding protein) cause hypersensitivity to halogenated anesthetics (malignant hyperthermia [MH] susceptibility) and to heat (heat stroke; HS). As both MH and HS are characterized by excessive cytosolic Ca2+ levels and hypermetabolic responses, we studied the metabolism of 4-mo-old mice from two different lines that are MH/HS susceptible: knock-in mice carrying a human MH mutation (RYR1YS) and CASQ1-knockout (ko) mice. RYR1YS and, to a lesser degree, CASQ1-null mice show an increased volume of oxygen consumption (VO2) and a lower respiratory quotient (RQ) compared with WT mice (indicative of a metabolism that relies more on lipids). This finding is accompanied by a reduction in total body fat mass in both Y522S and CASQ1-null mice (again, compared with WT). In addition, we found that RYR1YS and CASQ1-null mice have an increased food consumption (+26.04% and +25.58% grams/day, respectively) and higher basal core temperature (+0.57°C and +0.54°C, respectively) compared with WT mice. Finally, Western blots and electron microscopy indicated that, in hyperthermic mice, (1) SERCA (used to remove myoplasmic Ca2+) and UCP3 (responsible for a thermogenic process that dissipates mitochondrial H+ gradient) are overexpressed, and (2) mitochondrial volume and percentage of damaged mitochondria are both increased. In conclusion, the MH/HS phenotype in RYR1YS and CASQ1-null mice is associated with an intrinsically increased basal metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.