Abstract

Climate warming is leading to earlier budburst and therefore an increased risk of spring frost injury to young leaves. But to what extent are second-cohort leaves, which trees put out after leaf-killing frosts, able to compensate incurred losses? To investigate whether second-cohort leaves behave differently from first-cohort leaves, we exposed saplings of beech (Fagus sylvatica), oak (Quercus robur), and honeysuckle (Lonicera xylosteum) to experimental treatments mimicking either a warm spring or a warm spring with a leaf-killing frost. Refoliation took 48, 43, and 36d for beech, oak and honeysuckle, respectively. In beech and oak, autumn Chl content and photosynthesis rates were higher in second- than in first-cohort leaves, senescence in second-cohort leaves occurred c. 2-wk-later, and autumn bud growth in beech was elevated 66% in frost-damaged plants compared with the warm spring treatment. No differences in autumn phenology and growth were observed for honeysuckle. Overall, in beech and oak, delayed Chl breakdown in second-cohort leaves mitigated 31% and 25%, respectively, of the deficit in growing-season length incurred by spring frost damage. These results reveal an unexpected ability of second-cohort leaves of beech and oak to compensate for spring frost damage, and demonstrate that long-lived trees vary their autumnal phenology depending on preceding productivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call