Abstract

Extracts made from Escherichia coli null dnaK strains contained elevated levels of ATP-dependent proteolytic activity compared with levels in extracts made from dnaK+ strains. This ATP-dependent proteolytic activity was not due to Lon, Clp, or Alp-associated protease. Comparison of the levels of ATP-dependent proteolytic activity present in lon rpoH dnaK mutants and in lon rpoH dnaK+ mutants showed that the level of ATP-dependent proteolytic activity was elevated in the lon rpoH dnaK mutant strain. These findings suggest that DnaK negatively regulates a new ATP-dependent proteolytic activity, independently of sigma 32. Other results indicate that an ATP-dependent proteolytic activity was increased in a lon alp strain after heat shock. It is not yet known whether the same protease is associated with the increased ATP-dependent proteolytic activity in the dnaK mutants and in the heat-shocked lon alph strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.