Abstract
Studying the influence of topography and litter and soil nutrients on soil enzymes and microbial biomass is important to the understanding of soil nutrient transformation and cycling, but these relationships in heterogeneous soils of karst ecosystem remains poorly understood. We determined environment factors influencing the urease (URS) and alkaline phosphatase (ALP) activity and microbial biomass C and N (MBC and MBN) with advancing vegetation succession. The results showed that ALP increased but URS decreased with the advancing vegetation succession. The MBC and MBN were highest in shrubland, but both were lowest in grassland. The URS was positively correlated with the surface cover of rock outcrops (SRO) but negatively correlated with litter N, and soil available N and pH. Conversely, ALP was positively correlated with litter N, soil organic carbon (SOC), and soil available N and pH, but negatively correlated with soil total N. The MBC was positively related to litter quantities and SOC but negatively related to soil pH; the MBN was positively related to slope gradient (SLG), SOC, and soil total P and available P. Additionally, the trends of the index URS/MBN were grassland > secondary forest > shrubland > primary forest, but the index ALP/MBN increased with advancing vegetation succession. It indicated that soil microorganism mainly exudate extracellular URS and ALP to soils. We also found the interactions of topography (SLG and SRO), litter (nutrients and quantity), and soil (nutrients and pH) explained 42.00, 87.00, and 66.00% of the variations in URS, ALP, and microbial biomass, respectively. Path analysis showed that the topography had a directly positive effect on litter nutrients and quantities, but not on soil nutrients; the litter nutrients and quantities had direct positive effect on soil nutrients, which had direct effect on soil enzymes and microbial biomass; the relationships (R2) between the independent variable and enzymes activities and microbial biomass increased with advancing successions. Thus, it suggested that high SLG and SRO are good for collecting litters back to soils and then the topography, litter, and soil factors increased its controlling effect on soil enzymes activities and microbial biomass with advancing successions in karst ecosystem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.