Abstract
There is some uncertainty whether the acute hyperthermia caused by MDMA (ecstasy) plays a significant role in determining the long-term neurotoxic effects on brain 5-HT systems and associated changes in mood and behaviour. The present study assessed whether long-term behavioural and cognitive changes seen in MDMA-treated rats are affected by hyperthermia at the time of drug administration. Male Wistar rats were treated with MDMA (4x5 mg/kg i.p. over 4 h on 2 consecutive days) or vehicle at either a high ambient temperature (28 degrees C) or a low ambient temperature (16 degrees C). Eight to 18 weeks later, rats were tested in behavioural measures of anxiety (social interaction and emergence tests), a test of cognition (object recognition test) and the forced swim test of depression. At the conclusion of behavioural testing the rats were killed and their brains analysed using HPLC. MDMA treatment caused a clear and consistent hyperthermia at 28 degrees C and hypothermia at 16 degrees C. Months later, rats pre-treated with MDMA at either 16 or 28 degrees C displayed increased anxiety in the social interaction and emergence tests and reduced escape attempts and increased immobility in the forced swim test. MDMA pre-treatment was also associated with poorer memory on the object recognition test, but only in rats given the drug at 28 degrees C. Rats pre-treated with MDMA showed loss of 5-HT in the hippocampus, striatum, amygdala and cortex, regardless of body temperature at the time of dosing. However, 5-HIAA loss in the amygdala and hippocampus was greater in rats pre-treated at 28 degrees C. Dopamine in the striatum was also depleted in rats given MDMA. These results indicate that hyperthermia at the time of dosing with MDMA is not necessary to produce subsequent 5-HT depletion and anxiety in rats. They also extend previous findings of long-term effects of brief exposure to MDMA in rats to include apparent "depressive" symptoms in the forced swim model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.