Abstract

Strategies to control bovine respiratory disease depend on accurate classification of disease risk. An objective method to refine the risk classification of beef calves could be economically beneficial, improve welfare by preventing unexpected disease occurrences, refine and reduce the use of antibiotics in beef production, and facilitate alternative methods of disease control. The objective of this study was to identify proteins in bronchoalveolar lavage fluid (BALF) of stressed healthy calves that predict later disease outcome, serve as biomarkers of susceptibility to pneumonia, and play a role in pathogenesis. BALF was collected from 162 healthy beef calves 1–2 days after weaning and transportation. Difference in gel electrophoresis (DIGE) and mass spectrometry were used to compare proteins in samples from 7 calves that later developed respiratory disease compared to 7 calves that remained healthy. Calves that later developed pneumonia had significantly lower levels of annexin A1, annexin A2, peroxiredoxin I, calcyphosin, superoxide dismutase, macrophage capping protein and dihydrodiol dehydrogenase 3. Differences in annexin levels were partially confirmed by western blot analysis. Thus, lower levels of annexins A1 and A2 are potential biomarkers of increased susceptibility to pneumonia in recently weaned and transported feedlot cattle. Since annexins are regulated by glucocorticoids, this finding may reflect individual differences in the stress response that predispose to pneumonia. These findings also have implications in pathogenesis. Annexins A1 and A2 are known to prevent neutrophil influx and fibrin deposition respectively, and may thus act to minimize the harmful effects of the inflammatory response during development of pneumonia.

Highlights

  • Shipping fever pneumonia of feedlot cattle results when stress and/or viral infection triggers nasopharyngeal populations of Mannheimia haemolytica to proliferate and colonize the lower respiratory tract [1]

  • The numbers of total leukocytes, neutrophils, lymphocytes and monocytes were lower in calves that later developed pneumonia compared to calves that remained healthy, these differences were not statistically significant (P = 0.36, 0.78, 0.40 and 0.91, respectively)

  • Difference in gel electrophoresis (DIGE) analysis of bronchoalveolar lavage fluid (BALF) The DIGE gels of BALF from clinically healthy calves, obtained within 2–3 days of arrival to the feedlot, contained approximately 2400 identifiable protein spots that ranged in molecular weight from 12–225 kDa across the pI range of 3–10 (Figure 1)

Read more

Summary

Introduction

Shipping fever pneumonia of feedlot cattle results when stress and/or viral infection triggers nasopharyngeal populations of Mannheimia haemolytica to proliferate and colonize the lower respiratory tract [1]. The presence of bacteria in the lung elicits an acute inflammatory response characterized by exudation of fluid, formation of fibrin in alveoli, and infiltration of neutrophils and macrophages. These changes lead to diminished lung function, systemic consequences of sepsis, reduced weight gain and feed conversion, reduced carcass quality, and in some cases death. Imprecise classification of risk groups may result in disease outbreaks in calves wrongly thought to be at low or medium risk, or unnecessary use of antibiotics in calves falsely believed to be at high risk. An objective method to refine the risk classification of feedlot calves could be economically beneficial, improve welfare by preventing unexpected disease occurrences, refine and reduce the use of antibiotics in beef production, and facilitate alternative methods of disease control

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call