Abstract

Endostatin, a proteolytic fragment of basement membrane-associated collagen XVIII, has been shown to be a potent angiogenesis inhibitor both in vivo and in vitro when given at high concentrations. The precise molecular mechanisms by which it functions and whether or not it plays a role in physiological regulation of angiogenesis are not clear. In mice with targeted null alleles of Col18a1, there appears to be no major abnormality in vascular patterns or capillary density in most organs. Furthermore, the growth of experimental tumors is not increased. However, a detailed analysis of induced angiogenesis in these mice has not been performed. Therefore, we compared the angiogenic responses induced by in vitro culture of aortic explants from collagen XVIII/endostatin-null mice (ko) to wild-type (wt) littermates. We found a twofold increase in microvessel outgrowth in explants from ko mice, relative to wt explants. This increased angiogenesis was reduced to the wt level by the addition of low levels (0.1 microg/ml) of recombinant mouse or human endostatin during the culture period. To address cellular/molecular mechanisms underlying this difference in angiogenic response between ko and wt mice, we isolated endothelial cells from both strains and compared their biological behavior. Proliferation assays showed no difference between the two types of endothelial cells. In contrast, adhesion assays showed a striking difference in their ability to adhere to fibronectin suggesting that collagen XVIII/endostatin may regulate interactions between endothelial cells and underlying basement membrane-associated components, including fibronectin, such that in the absence of collagen XVIII/endostatin, endothelial cells are more adhesive to fibronectin. In the aortic explant assay, characterized by dynamic processes of microvessel elongation and regression, this may result in stabilization of newly formed vessels, reduced regression, and a net increase in microvessel outgrowth in explants from ko mice compared to the wt littermates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.