Abstract

Ageing is thought to participate to the pathogenesis of sporadic inclusion-body myositis (s-IBM). Although the regenerative potential of s-IBM muscle is reduced in vivo, age-related abnormalities of satellite cells possibly accounting for the decline of muscle repair have not been demonstrated. Here we show that proliferation rate and clonogenicity of s-IBM myoblasts are significantly lower and doubling time is longer than normal age-matched controls, indicating that proliferative capacity of s-IBM muscles becomes exhausted earlier. Telomere shortening is detected in s-IBM cells suggesting premature senescence. Differently from controls, s-IBM myoblasts show increased active beta-catenin mainly localized within myonuclei, indicating active Wnt stimulation. After many rounds of muscle growth, only s-IBM myoblasts accumulate congophilic inclusions and immunoreactive Abeta(1-40) deposits. Therefore, s-IBM myoblasts seem to have a constitutively impaired regenerative capacity and the intrinsic property, upon sufficient aging in vitro, to accumulate Abeta. Our results might be valuable in understanding molecular mechanisms associated with muscle aging underlying the defective regeneration of s-IBM muscle and provide new clues for future therapeutic strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.