Abstract
The climate effects of atmospheric aerosols remain highly uncertain. Part of the uncertainty arises from the fact that scattering and absorbing aerosols have distinct or even opposite effects. Thus their relative fraction is critical in determining the overall aerosol climate effect. This study combines observations and global model simulations to demonstrate that changes in the fraction of scattering and absorbing aerosols play an important role in driving the monsoon precipitation decrease over northern India since the 1980s, especially over the Gangetic Basin. Increased aerosol scattering, or decreased aerosol absorption, manifested as a significant increase of aerosol single scattering albedo (SSA), causes strong cooling in the upper atmosphere. This suppresses vertical convection and thus reduces precipitation. Further analysis of the Couple Model Intercomparison Project Phase 6 multi-model-mean historical simulation shows that failing to capture the SSA increase over northern India is likely an important cause of the simulated precipitation trend bias in this area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.