Abstract

Production of Annexin A1 (ANXA1), a protein that mediates the anti-inflammatory action of glucocorticoids, is altered in obesity, but its role in modulation of adiposity has not yet been investigated. The objective of this study was to investigate modulation of ANXA1 in adipose tissue in murine models of obesity and to study the involvement of ANXA1 in diet-induced obesity in mice. Significant induction of ANXA1 mRNA was observed in adipose tissue of both C57BL6 and Balb/c mice with high fat diet (HFD)-induced obesity versus mice on chow diet. Upregulation of ANXA1 mRNA was independent of leptin or IL-6, as demonstrated by use of leptin-deficient ob/ob mice and IL-6 KO mice. Compared to WT mice, female Balb/c ANXA1 KO mice on HFD had increased adiposity, as indicated by significantly elevated body weight, fat mass, leptin levels, and adipocyte size. Whereas Balb/c WT mice upregulated expression of enzymes involved in the lipolytic pathway in response to HFD, this response was absent in ANXA1 KO mice. A significant increase in fasting glucose and insulin levels as well as development of insulin resistance was observed in ANXA1 KO mice on HFD compared to WT mice. Elevated plasma corticosterone levels and blunted downregulation of 11-beta hydroxysteroid dehydrogenase type 1 in adipose tissue was observed in ANXA1 KO mice compared to diet-matched WT mice. However, no differences between WT and KO mice on either chow or HFD were observed in expression of markers of adipose tissue inflammation.These data indicate that ANXA1 is an important modulator of adiposity in mice, with female ANXA1 KO mice on Balb/c background being more susceptible to weight gain and diet-induced insulin resistance compared to WT mice, without significant changes in inflammation.

Highlights

  • Obesity is a worldwide epidemic and a major risk factor for several morbidities, partly through induction of chronic inflammation [1]

  • In the present study we investigated the modulation of Annexin A1 (ANXA1) in adipose tissue in models of diet-induced (DIO) and genetic obesity, and studied whether ANXA1 participates in modulation of adiposity, glucose metabolism and obesity-associated inflammation using a model of DIO

  • Expression of ANXA1 in adipose tissue To investigate whether obesity induced by high fat diet (HFD) alters expression of ANXA1 in adipose tissue, we used male C57BL6 mice, a strain that is highly susceptible to DIO [18]

Read more

Summary

Introduction

Obesity is a worldwide epidemic and a major risk factor for several morbidities, partly through induction of chronic inflammation [1]. Accumulation of fat in the visceral (VAT) rather than the subcutaneous (SAT) adipose tissue is associated with higher inflammation and increased risk of obesity-related diseases [2]. Glucocorticoids (GC) regulate production of ANXA1, which in turn mediates at least part of GC’s anti-inflammatory actions [7]. Limited and partly controversial evidence indicates a potential role for ANXA1 in obesity and diabetes. Transcriptome analysis of human adipose tissue reveals increased ANXA1 expression in response to obesity [12]. The peroxisome proliferatoractivated receptor-gamma (PPARc) agonist rosiglitazone upregulates ANXA1 in adipose tissue, a response that is in line with the anti-inflammatory, insulin-sensitizing actions of this compound [14]. The role and regulation of ANXA1 in the context of obesity and diabetes remain to be elucidated

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call