Abstract

A rational design approach was used to create the mutant Candida antarctica lipase B (CALB, also known as Pseudozyma antarctica lipase B) V190A having a k cat three times higher compared to that of the wild type (wt) enzyme for the transacylation of the industrially important compound methyl methacrylate. The enzymatic contribution to the transacylation of various acrylates and corresponding saturated esters was evaluated by comparing the reaction catalysed by CALB wt with the acid (H 2SO 4) catalysed reaction. The performances of CALB wt and mutants were compared to two other hydrolases, Humicola insolens cutinase and Rhizomucor mihei lipase. The low reaction rates of enzyme catalysed transacylation of acrylates were found to be caused mainly by electronic effects due to the double bond present in this class of molecules. The reduction in rate of enzyme catalysed transacylation of acrylates compared to that of the saturated ester methyl propionate was however less than what could be predicted from the energetic cost of breaking the π-system of acrylates solely. The nature and concentration of the acyl acceptor was found to have a profound effect on the reaction rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.