Abstract

Cadmium is known to reduce photosynthesis and overall growth of plants. Plants adopt several mechanisms of Cd detoxification, such as accumulation of sulfur-rich compounds, like glutathione (GSH) and its precursor cysteine. The accumulation of GSH is regulated by the activity of ATP-sulfurylase, a rate-limiting enzyme in sulfur assimilation. The carbon of Cys is provided through photosynthesis. Thus, a plant with the higher photosynthetic potential and ATP-sulfurylase activity may have the higher contents of Cys and GSH and therefore may provide for a greater tolerance to Cd stress. Mustard (Brassica juncea L. Czern and Coss.) cvs. Varuna (high photosynthetic potential) and RH30 (low photosynthetic potential) were subjected to 0 and 200 mg Cd/kg soil, and the activity of ATP-sulfurylase, the contents of Cys and GSH, oxidative stress, and activities of antioxidant enzymes were studied. Under 200 mg Cd/kg soil, cv. Varuna showed an increased ATP-sulfurylase activity, the higher contents of Cys and GSH, and the net photosynthetic rate than cv. RH30. In contrast, the activity of superoxide dismutase, the contents of thiobarbituric acid-reactive substances, and H2O2, and electrolyte leakage were found to be greater in cv. RH30 showing an increased oxidative stress than cv. Varuna. However, the activities of ascorbate peroxidase and glutathione reductase were greater in cv. Varuna than cv. RH30. The results show that a greater ATP-sulfurylase activity, an enhanced production of Cys and GSH, and an efficient antioxidant enzyme system in the high photosynthetic mustard cv. Varuna helped to the reduce the oxidative stress maintaing high photosynthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.