Abstract
The set of canonical redundant variables previously introduced by the first author is derived from Cartesian coordinates in a simplified form which allows the reduction of the Kepler problem to four harmonic oscillators with unit frequency. The coordinates are defined to be the direction cosines of the position of the particle along with the inverse of its distance. True anomaly is the new independent variable. The behavior of this new transformation is studied when applied to the numerical integrations of the main problem in satellite theory. In particular, computation time and accuracy of orbits in the new variables are compared with those in K-S and Cartesian variables. It is noteworthy that for high eccentricities the new variables require the least computation time for comparable accuracy, regardless of the integration scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.