Abstract

BackgroundThe Botryosphaeriaceae are important plant pathogens, but also have the ability to establish asymptomatic infections that persist for extended periods in a latent state. In this study, we used comparative genome analyses to shed light on the genetic basis of the interactions of these fungi with their plant hosts. For this purpose, we characterised secreted hydrolytic enzymes, secondary metabolite biosynthetic gene clusters and general trends in genomic architecture using all available Botryosphaeriaceae genomes, and selected Dothideomycetes genomes.ResultsThe Botryosphaeriaceae genomes were rich in carbohydrate-active enzymes (CAZymes), proteases, lipases and secondary metabolic biosynthetic gene clusters (BGCs) compared to other Dothideomycete genomes. The genomes of Botryosphaeria, Macrophomina, Lasiodiplodia and Neofusicoccum, in particular, had gene expansions of the major constituents of the secretome, notably CAZymes involved in plant cell wall degradation. The Botryosphaeriaceae genomes were shown to have moderate to high GC contents and most had low levels of repetitive DNA. The genomes were not compartmentalized based on gene and repeat densities, but genes of secreted enzymes were slightly more abundant in gene-sparse regions.ConclusionThe abundance of secreted hydrolytic enzymes and secondary metabolite BGCs in the genomes of Botryosphaeria, Macrophomina, Lasiodiplodia, and Neofusicoccum were similar to those in necrotrophic plant pathogens and some endophytes of woody plants. The results provide a foundation for comparative genomic analyses and hypotheses to explore the mechanisms underlying Botryosphaeriaceae host-plant interactions.

Highlights

  • The Botryosphaeriaceae are important plant pathogens, and have the ability to establish asymptomatic infections that persist for extended periods in a latent state

  • The number of scaffolds/ contigs was variable between the sequenced genomes, but the three Lasiodiplodia genomes had a lower number of scaffolds (376–424) than the Neofusicoccum genomes (1343–5188)

  • The results showed that the included Botryosphaeriaceae genomes, especially those of Botryosphaeria, Macrophomina, Lasiodiplodia and Neofusicoccum, encode high numbers of secreted hydrolytic enzymes and secondary metabolite biosynthetic gene clusters (BGCs)

Read more

Summary

Introduction

The Botryosphaeriaceae are important plant pathogens, and have the ability to establish asymptomatic infections that persist for extended periods in a latent state. We used comparative genome analyses to shed light on the genetic basis of the interactions of these fungi with their plant hosts For this purpose, we characterised secreted hydrolytic enzymes, secondary metabolite biosynthetic gene clusters and general trends in genomic architecture using all available Botryosphaeriaceae genomes, and selected Dothideomycetes genomes. Fungal toxins are a diverse group of compounds and those most commonly found in fungal pathogens include polyketides, non-ribosomal peptides, terpenes and indole alkaloids [8]. Genes localized to repeat-rich, gene sparse regions have a higher rate of mutation and are often under stronger selective pressure [11, 14, 15] This has given rise to a phenomenon referred to as ‘two-speed’ genomes, due to the stark differences in evolutionary rates between the two different types of genomic regions

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call