Abstract

The renal carcinogen, ferric nitrilotriacetate (Fe-NTA), is known to induce oxidative stress and the subsequent formation of a type of oxidative DNA damage, 8-hydroxyguanine (8-OH-Gua), in the rat kidney (Umemura et al., 1990). Using an improved DNA isolation method (Nakae et al., 1995), which reduces the background level of 8-OH-Gua, we found a five-fold increase in the 8-OH-Gua level in kidney DNA after a single i.p. injection of Fe-NTA. On the basis of the report that 8-OH-Gua repair activity is enhanced after cells are exposed to oxidative stress due to ionizing radiation (Bases et al., 1992), the measurement of 8-OH-Gua repair activity will also be useful to assess cellular oxidative stress. The 8-OH-Gua repair enzyme activity was determined with an endonuclease assay using a 22 mer DNA that contains 8-OH-Gua at a specific position. A five-fold increase in the 8-OH-Gua repair activity as compared with the control, was observed in the target organ, the rat kidney, 120 h after Fe-NTA administration. In the non-target organ, the liver, the increase was not as large (two-fold). This simple assay of oxidative DNA damage repair will be useful for evaluating the carcinogenicity of oxygen radical forming chemicals, in addition to chemical analyses of oxidative DNA damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.