Abstract

Adenosine A2A receptor (A2AR) is a G-protein-coupled receptor highly expressed in basal ganglia. Its expression levels are severely reduced in Huntington's disease (HD), and several pharmacological therapies have shown its implication in this neurodegenerative disorder. The main goal of this study was to gain insight into the molecular mechanisms that regulate A2AR gene (ADORA2A) expression in HD. Based on previous data reported by our group, we measured the methylcytosine (5mC) and hydroxymethylcytosine (5hmC) content in the 5'UTR region of ADORA2A in the putamen of HD patients and in the striatum of R6/1 and R6/2 mice at late stages of the disease. In this genomic region, 5mC and 5hmC remained unchanged in both mice strains, although low striatal A2AR levels were associated with reduced 5mC levels in 30-week-old R6/1 mice and reduced 5hmC levels in 12-week-old R6/2 mice in exon m2. In order to analyze when this mechanism appears during the progression of the disease, a time course for A2AR protein levels was carried out in R6/1 mice striatum (8, 12, and 20weeks of age). A2AR levels were reduced from 12weeks of age onwards, and this downregulation was concomitant with reduced 5hmC levels in the 5'UTR region of ADORA2A. Interestingly, increased 5mC levels and reduced 5hmC were found in the 5'UTR region of ADORA2A in the putamen of HD patients with respect to age-matched controls. Therefore, an altered DNA methylation pattern in ADORA2A seems to play a role in the pathologically decreased A2AR expression levels found in HD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.