Abstract

Positron emission tomography (PET), a cornerstone in cancer diagnosis and treatment monitoring, relies on the enhanced uptake of fluorodeoxyglucose ([18F]FDG) by cancer cells to highlight tumors and other malignancies. While instrumental in the clinical setting, the accuracy of [18F]FDG-PET is susceptible to metabolic changes introduced by radiation therapy. Specifically, radiation induces the formation of giant cells, whose metabolic characteristics and [18F]FDG uptake patterns are not fully understood. Through a novel single-cell gamma counting methodology, we characterized the [18F]FDG uptake of giant A549 and H1299 lung cancer cells that were induced by radiation, and found it to be considerably higher than that of their non-giant counterparts. This observation was further validated in tumor-bearing mice, which similarly demonstrated increased [18F]FDG uptake in radiation-induced giant cells. These findings underscore the metabolic implications of radiation-induced giant cells, as their enhanced [18F]FDG uptake could potentially obfuscate the interpretation of [18F]FDG-PET scans in patients who have recently undergone radiation therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call