Abstract

Studies have demonstrated that abnormalities in interferon regulatory factor-1 (IRF-1) expression might develop myelodysplastic syndromes (MDS). IRF-1 was described as modulator of T regulatory (Treg) cells by suppressing Foxp3 on mice. We aimed to determine the role of Treg and IRF-1 in MDS. Thirty-eight MDS patients fulfilling WHO criteria and classified according to risk scores were evaluated at time 0 (T0) and after 12 months (T12) for: Treg suppression activity in coculture with T effector (Teff) cells; IRF-1 and Foxp3 genetic expression by qRT-PCR; IL-2, −4, −6, −10, −17, TNFα and IFNγ production by Cytometric Bead Array. No differences in Foxp3 expression (T0=0.06±0.06 vs T12=0.06±0.12, p=0.5), Treg number (T0=5.62±2.84×105 vs T12=4.87±2.62×105; p=0.3) and Teff percentage (T0=16.8±9.56% vs T12=13.1±6.3%; p=0.06) were observed on T12. Low risk MDS patients showed a higher number of Treg (5.2±2.6×105) versus high risk group (2.6±1.2×105, p=0.03). Treg suppression activity was impaired on T0 and T12.Cytokine production and IRF-1 expression were increased on T12. The correlation between IRF-1 and FoxP3 was negative (r2=0.317, p=0.045) on T0. These results suggest a hyper activity of the immune system, probably secondary to Treg suppression activity impairment. This state may induce the loss of tolerance culminating in the proliferation of MDS clones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call