Abstract

The aim of this study was to test the hypothesis that recombinant human growth and differentiation factor-5 (rhGDF-5) induces an increased and homogenous distribution of new bone formation across the entire volume of sinus floor augmentation in 12 Goettingen Minipigs. In a randomized split-mouth design, one maxillary sinus was augmented with the bone substitute β-TCP, whereas a combination of β-TCP and the osteoinductive growth factor rhGDF-5 was used on the contralateral side. To evaluate the influence of dose and time on the effectiveness of the factor, two different concentrations of rhGDF-5 (400 μg and 800 μg) and healing periods (4 and 12 weeks) were each analysed. After 4 weeks, a homogenous gradient of bone formation could be observed for all dosage groups, with decreasing bone density from the local bone towards the sinus membrane. Both test groups, however, achieved a higher total level of bone formation compared with the control group, which was only significant in the low-dose group (P = 0.0184). After 12 weeks, the influence of the growth factor significantly depends on the region (P = 0.023). In the low-dose group, the new bone formation did not differ significantly within the examined regions of the graft (P = 0.1118), suggesting a homogeneous bone formation over the entire augmentation. The gradient of the high-dose group was similar to the control group with a decrease of local bone development. rhGDF-5 delivered on a β-TCP scaffold material leads to an increase in homogeneous new bone formation across the entire volume of the sinus floor augmentation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call