Abstract

Surf clam (Spisula solidissima) oocytes are spawned at the prophase I stage of meiosis, and they remain arrested at this stage until fertilization. Full oocyte meiosis reinitiation, first evidenced by germinal vesicle breakdown (GVBD), may be induced by artificial activators mimicking sperm, such as high K(+) or serotonin. Previous reports indicated that treatments thought to increase the level of oocyte cAMP inhibited sperm- or serotonin-induced, but not KCl-induced, GVBD in clam oocytes. These observations extend the well known requirement for a drop in oocyte cAMP levels in mammalian, amphibian or starfish oocytes and support the view that such a drop is universally important throughout the animal kingdom. We have re-examined the cAMP dependency of GVBD in clam oocytes and found that various treatments that raise oocyte cAMP levels did not, surprisingly, affect either KCl- or serotonin-induced GVBD. Such treatments, however, inhibited GVBD upon insemination of the oocytes, but this was due to the failure of sperm to fuse/penetrate the oocytes; thus, it was not an inhibition of oocyte activation as such. Direct measurements of oocyte cAMP levels after activation by serotonin, KCl or sperm showed that, contrary to expectations, there is a rise in cAMP levels before GVBD. Using SQ22536, an adenylyl cyclase inhibitor, the increase in oocyte cAMP level was partly prevented and GVBD proceeded, but with a significant retardation, indicating that the normal cAMP rise facilitates GVBD. Our work sheds light on the diversity of upstream pathways leading to activation of MPF and provides a unique model whereby the onset of meiosis reinitiation is associated with an increase, not a decrease, in oocyte cAMP levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call