Abstract

The effect of novobiocin (an inhibitor of DNA topoisomerase and polymerase) on the frequency of chromosomal aberrations was examined in Chinese hamster V79 cells irradiated with gamma-rays in the plateau phase of growth and subcultured in the presence of novobiocin until the first mitosis after irradiation. Novobiocin alone affected cell survival, DNA synthesis and the mitotic frequency of unirradiated cells in a dose-dependent manner, without causing any significant increase in the frequency of chromosome- or chromatid-type aberrations. The frequency of chromosome-type aberrations induced by gamma-radiation was not influenced by novobiocin at 200 microM, but the frequency of chromosome deletions (but not rings and dicentrics) showed a two-fold increase when 300 microM novobiocin was present. Irradiation produced a low level of chromatid-type aberrations and post-treatment with novobiocin at concentrations greater than 100 microM significantly increased the frequency of chromatid gaps and breaks. The results support the idea that different radiation-induced lesions lead to chromosome- as opposed to chromatid-type aberrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.