Abstract

It has long been proposed that the cellular and molecular mechanisms responsible for LTP may well involve the mechanisms that lead to the type of synaptic modification that occurs during learning. However, it is also known that a single memory trace is encoded in spatially distributed networks; implying that alterations of synaptic strength occur at multiple sites along circuits of connected cells. Recent evidence suggests that regulation of the gene encoding syntaxin 1B, a presynaptic protein involved in exocytosis, plays an important role in the mediation of trans-synaptic LTP, a candidate mechanism for the propagation of plasticity in neural circuits during learning. Using in situ hybridization to measure the mRNA levels at different time points after learning a spatial working or reference memory task, we show that expression of the gene encoding this protein in the hippocampal and corticoprefrontal circuits increases linearly with performance at a critical window of learning when rats are reaching between 75% and 100% of their maximal performance. No changes were observed during the early phases of learning or when rats where overtrained. The correlational analysis indicates that coordinated increases in syntaxin 1B expression occurs in hippocampal circuits during working memory and in more widespread hippocampocortical circuits during reference memory. These results suggest that a form of trans-synaptic plasticity mediated in part by regulation of the expression of syntaxin 1B may play an active role in configuring specific spatially distributed circuits during the laying down of memories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.