Abstract
Flexible self-healing composite was fabricated based on blending the bromobutyl rubber (BIIR) and epoxide natural rubber (ENR) filled with hybrid fillers of carbon nanotubes (CNT) and carbon black (CB). To achieve self-recoverability, modification of BIIR was carried out through butyl imidazole (IM), and the healing capability was then activated by the addition of bis(triethoxysilylpropyl)tetrasulfide (TESPT), which resulted in good dispersion of CNT/CB in BIIR/ENR blends. The silanization of TESPT and CNT/CB hybrid filler surfaces was confirmed by attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. Adding CNT/CB and incorporating TESPT into the composites effectively improved the curing and mechanical properties of the blends in terms of estimated crosslink density and tensile modulus. Further, the self-healing propagation rate was enhanced by the thermal conductivity of fillers and the ion-dipole intermolecular forces between the rubber chains, leading to the highest abrasion resistance and electrical conductivity. Using an environmentally friendly process, the recyclability of the self-healing composites was improved by the re-compression of the samples. With this, the constant conductivity relating to the rearrangement of the CNT/CB network is examined related to the usability of the composites at 0 and 60 °C. The conductive composites filled with a TESPT silane coupling agent present an opportunity for vehicle tires and other self-repairing applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.