Abstract
Liver failure altered P-glycoprotein (P-gp) function and expression at blood-brain barrier (BBB), partly owing to hyperammonemia. We aimed to examine the effects of partial portal vein ligation (PVL) plus chronic hyperammonemia (CHA) on P-gp function and expression at rat BBB. Experimental rats included sham-operation (SH), PVL, CHA and PVL+CHA. The PVL+CHA rats were developed by ammonia-containing diet for 2 weeks after operation. The brain-to-plasma concentration ratios (Kp) and apparent unidirectional influx constants (Kin) of rhodamine123 and sodium fluorescein were measured to assess function of P-gp and BBB integrity, respectively. Human cerebral microvascular endothelial cells (HCMEC/D3) were used to assess effects of ammonia on P-gp expression and function. It was found that PVL+CHA significantly decreased Kp and Kin of rhodamine123 without affecting brain distribution of fluorescein. The P-gp expressions in membrane protein in cortex and hippocampus were significantly increased in CHA and PVL +CHA rats, especially in PVL + CHA rats, while remarkably increased phosphorylated ERK1/2 was only found in PVL +CHA rats. Expressions of tight junction proteins claudin-5 and occluding in rat brain remained unchanged. In vitro data showed that NH4Cl increased reactive oxygen species, membrane expression and function of P-gp as well as phosphorylated ERK1/2 levels in HCMEC/D3. The NH4Cl-induced alterations were reversed by reactive oxygen species scavenger N-acetylcysteine and ERK1/2 inhibitor U0126. In conclusion, PVL+CHA increased function and membrane translocation of P-gp at rat BBB partly via ammonia. Reactive oxygen species/ERK1/2 pathway activation may be one of the reasons that ammonia upregulated P-gp expression and function at BBB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.