Abstract

Sexual dimorphism in the spinal nucleus of the bulbocavernosus (SNB) of the Mongolian gerbil is achieved by two periods of postnatal increase, one in the first month after birth and one at puberty. The pubertal increase in motoneuron number is of particular interest because it occurs in a nearly adult animal. The purpose of this research was threefold. The first was to determine the response of the SNB in prepubertally castrated male gerbils receiving delayed hormone replacement as adults. Testosterone propionate (TP) treatment resulted in numbers of SNB motoneurons comparable to those seen in intact males, whereas androgen metabolites were less effective. The second purpose was to determine the latency of motoneurons to appear in response to TP. New SNB motoneurons appeared within 2 days of delayed TP replacement in prepubertally castrated males, and 16 days of treatment did not further increase SNB motoneuron numbers. The response of the motoneurons to TP appeared more rapid than the response of the bulbocavernosus (BC) muscle, scent gland, and seminal vesicles. The third purpose was to determine whether the new cells were connected to a target muscle. After 16 days of TP treatment, more motoneurons were labeled in the SNB following injection of a retrograde tract tracer into the BC muscle compared with the number seen in control animals. Thus, new motoneurons appeared in the SNB of prepubertally castrated male Mongolian gerbils within 2 days of the start of delayed TP treatment and were connected to a target within 16 days of TP treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call