Abstract
Despite neurosteroidogenic enzymes are playing important roles in the regulation of brain development and function, the potential link between brain and gonad by the action of steroid hormones during gonadal sex differentiation is still not clear in teleosts. In this mini-review, we summarized our understanding on the early brain development related to the synthesis of neurosteroids and receptor signaling during gonadal sex differentiation in protogynous orange-spotted grouper, Epinephelus coioides (functional females for the first 6years of life and start to sex change around the age of 7years) and protandrous black porgy (functional males for the first 2years of life but begin to change sex during the third year). We found a similar profile in the increased expression of brain aromatase gene (aromatatse B or cyp19a1b), aromatase activity, estradiol (E(2)), and estrogen signaling in the brain of both grouper and black porgy fish during gonadal sex differentiation. In contrast to mammals, teleost fish Cyp19a1b expressed in a unique cell type, a radial glial cell, which is acted as progenitors in the brain of developing and adult fish. In agreement with these pioneer studies, we demonstrated that the grouper cyp19a1b/Cyp19a1b was expressed in radial glial cells. Further, in vivo data in the grouper brain showed that exogenous E(2) upregulated Cyp19a1b immunoreactivity (ir) in radial glial cells. These data suggest the possible roles of Cyp19a1b and E(2) in early brain development which is presumably related to gonadal sex differentiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.