Abstract

To study whether rod- and cone-driven electroretinogram (ERG) responses are altered in myopia patients. Dark- and light-adapted ERGs were recorded from 57 myopic eyes of 32 patients aged 22-30 and 19 emmetropic eyes of 10 age-matched normal subjects. The myopic eyes were divided into 3 groups according to spherical equivalent (SE) of manifest refraction: 18 low myopia eyes (≤ - 3.00 diopter (D), 23 moderate myopia eyes (- 3.25 to - 6.00 D), and 16 high myopia eyes (> - 6.25 D). The amplitudes of the dark- and light-adapted ERG a- and b-waves, as well as the frequency spectra of the cone-driven and rod-driven oscillatory potentials (OPs), were analyzed by fast Fourier transform. The peak frequency, implicit time, and total power of the OPs were determined. The axial length was measured with an IOL Master. The ERG parameters including those of the cone- and rod-driven OPs were compared among three groups. The amplitudes of the a-wave and b-wave of the dark-adapted ERGs were increased with refractive power (P < 0.05). Interestingly, the average peak frequency of the rod-driven OPs showed a significant positive correlation with refractive power (P < 0.001): 123.41 ± 9.13Hz in emmetropic controls, 129.12 ± 10.28Hz in low myopia, 133.90 ± 9.13Hz in moderate myopia, and 139.51 ± 5.78Hz in high myopia. However, the parameters of the light-adapted ERGs and the cone-driven OPs in myopic eyes were within normal ranges. We found significant positive correlation between the peak frequency of rod-driven OPs, as well as the amplitudes of rod-driven ERG a- and b-waves, and the refractive power. The results suggest that the rod system function was changing during the progress of myopia, while the cone system function appeared unaffected. The peak frequency of OPs appeared as a novel ERG parameter for myopia, a common ocular condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.