Abstract

Redox-active pyrrole (Py) monomers were intercalated into 1D nanochannels of [Cd(NDC)0.5(PCA)]·Gx (H2NDC = 2,6-napthalenedicarboxylic acid, HPCA = 4-pyridinecarboxylic acid, G = guest molecules) (1) - a fluorescent 3D MOF (λem = 385 nm). Subsequent activation of 1⊃Py upon immersing into iodine (I2) solution resulted in an increment of the bulk electrical conductivity by ∼9 orders of magnitude. The unusual increase in conductivity was attributed to the formation of highly oriented and conducting polypyrrole (PPy) chains inside 1D nanochannels and specific host-guest interaction in 1⊃PPy thereof. The Hall-effect measurements suggested 1⊃PPy to be an n-type semiconductor material with remarkably high-carrier density (η) of ∼1.5 × 10(17) cm(-3) and mobility (μ) of ∼8.15 cm(2) V(-1) s(-1). The fluorescence property of 1 was almost retained in 1⊃PPy with concomitant exciplex-type emission at higher wavelength (λem = 520 nm). The here-presented results on [MOF⊃Conducting Polymer] systems in general will serve as a prototype experiment toward rational design for the development of highly conductive yet fluorescent MOF-based materials for various optoelectronic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.