Abstract
The basal forebrain cholinergic pathways progressively degenerate during the progression of Alzheimer’s disease, leading to an irreversible impairment of memory and thinking skills. The stereotaxic lesion with 192IgG-saporin in the rat brain has been used to eliminate basal forebrain cholinergic neurons and is aimed at emulating the cognitive damage described in this disease in order to explore its effects on behavior and on neurotransmission. Learning and memory processes that are controlled by cholinergic neurotransmission are also modulated by the endocannabinoid (eCB) system. The objective of the present study is to evaluate the eCB signaling in relation to the memory impairment induced in adult rats following a specific cholinergic lesion of the basal forebrain. Therefore, CB1 receptor-mediated signaling was analyzed using receptor and functional autoradiography, and cellular distribution by immunofluorescence. The passive avoidance test and histochemical data revealed a relationship between impaired behavioral responses and a loss of approximately 75% of cholinergic neurons in the nucleus basalis magnocellularis (NBM), accompanied by cortical cholinergic denervation. The decrease in CB1 receptor density observed in the hippocampus, together with hyperactivity of eCB signaling in the NBM and cortex, suggest an interaction between the eCB and cholinergic systems. Moreover, following basal forebrain cholinergic denervation, the presynaptic GABAergic immunoreactivity was reduced in cortical areas. In conclusion, CB1 receptors present in presynaptic GABAergic terminals in the hippocampus are down regulated, but not those in cortical glutamatergic synapses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.