Abstract

Increased CO2 levels in the general circulation and/or in the myocardium are common under pathologic conditions. The purpose of this study was to test the hypothesis that an increase in CO2 levels, and not just the subsequent extra- or intracellular acidosis, would augment late sodium current (INa,L) and contribute to arrhythmogenesis in hearts with reduced repolarization reserve. Monophasic action potential durations at 90% completion of repolarization (MAPD90) from isolated rabbit hearts, INa,L, and extra- (pHo) and intracellular pH (pHi) values from cardiomyocytes using the whole-cell patch-clamp techniques and 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, acetoxymethyl ester (BCECF-AM), respectively, were measured. Increasing CO2 levels from 5% to 10% and 20% and administration of 1 nM sea anemone toxin (ATX)-II increased INa,L and prolonged both epicardial and endocardial MAPD90 (n = 7 and 10, respectively) without causing arrhythmic activities. Compared to 5% CO2, 10% and 20% CO2 decreased pHo and pHi in hearts treated with 1 nM ATX-II, caused greater prolongation of MAPD90, and elicited ventricular tachycardias. Increasing CO2 levels from 5% to 10% and 20% with pHo maintained at 7.4 produced smaller changes in pHi (P <.05) but similar increases in INa,L, prolongation of MAPD90, and incidence of ventricular tachycardias (n=8). Inhibition of INa,L reversed the increase in INa,L, suppressed MAPD90 prolongations, and ventricular tachycardias induced by 20% CO2. Increased phospho-calmodulin-dependent protein kinase II-δ (CaMKIIδ) and phospho-NaV1.5 protein levels in hearts treated with 20% CO2 was attenuated by eleclazine. Increased CO2 levels enhance INa,L and are proarrhythmic factors in hearts with reduced repolarization reserve, possibly via mechanisms related to phosphorylation of CaMKIIδ and NaV1.5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call