Abstract

Previous phylogenetic analyses of the auraria species complex have led to conflicting hypotheses concerning their relationship; therefore the addition of new sequence data is necessary to discover the phylogeny of this species complex. Here we present new data derived from 22 genes to reconstruct the phylogeny of the auraria species complex. A variety of statistical tests, as well as maximum likelihood mapping analysis, were performed to estimate data quality, suggesting that all genes had a high degree of contribution to resolve the phylogeny. Individual locus was analyzed using maximum likelihood (ML), and the concatenated dataset (21,882 bp) were analyzed using partitioned maximum likelihood (ML) and Bayesian analyses. Separated analysis produced various phylogenetic relationships. Phylogenetic topologies from ML and Bayesian analysis based on concatenated dataset show that D. subauraria was well supported as the first species by separated analysis, concatenated dataset analysis, and some previous analysis, then followed by D. auraria and D. biauraria, D. quadraria and D. triauraria. The close relationships of D. quadraria and D. triauraria were consistent with most previous studies. The phylogenetic position of the D. auraria and D. biauraria will be resolved by more data sets.

Highlights

  • Previous phylogenetic analyses of the auraria species complex have led to conflicting hypotheses concerning their relationship; the addition of new sequence data is necessary to discover the phylogeny of this species complex

  • Phylogenetic topologies from maximum likelihood (ML) and Bayesian analysis based on concatenated dataset show that D. subauraria was well supported as the first species by separated analysis, concatenated dataset analysis, and some previous analysis, followed by D. auraria and D. biauraria, D. quadraria and D. triauraria

  • The close relationships of D. quadraria and D. triauraria were consistent with most previous studies

Read more

Summary

Introduction

The phylogeny of the auraria species complex was studied based on various data, DNA sequence data. All previous studies on the phylogeny of this species complex are based on different sample sizes or genetic markers. On the other hand, differing sets of genetic markers were selected in previous studies, the most previous investigations were based on no more than two genetic markers [9] [11] [12] [15] [16] [17], phylogenetic hypotheses deduced from small amounts of sequence data would be incongruent or pool support [25]. Highly conserved genetic markers were involved in some analyses [3] [7] [13] [14] but some authors suggested that fast-evolving DNA regions were prior to analysis the molecular phylogenies of closely related species [26].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call