Abstract

In the perfused rat liver the anaphylatoxin C5a enhanced glucose output, reduced flow, and elevated prostanoid overflow. Because hepatocytes (HCs) do not express C5a receptors, the metabolic C5a actions must be indirect, mediated by e.g. prostanoids from Kupffer cells (KCs) and hepatic stellate cells (HSCs), which possess C5a receptors. Surprisingly, the metabolic C5a effects were not only impaired by the prostanoid synthesis inhibitor, indomethacin, but also by the thromboxane A(2) (TXA(2)) receptor antagonist, daltroban, even though HCs do not express TXA(2) receptors. TXA(2) did not induce prostaglandin (PG) or an unknown factor release from KCs or sinusoidal endothelial cells (SECs), which express TXA(2) receptors, because (1) daltroban did neither influence the C5a-induced release of prostanoids from cultured KCs nor the C5a-dependent activation of glycogen phosphorylase in KC/HC cocultures and because (2) the TXA(2) analog, U46619, failed to stimulate prostanoid release from cultured KCs or SECs or to activate glycogen phosphorylase in KC/HC or SEC/HC cocultures. In the perfused liver, Ca(2+)-deprivation inhibited not only flow reduction but also glucose output elicited by C5a to similar extents as daltroban. Similarly, in the absence of extracellular Ca(2+), flow reduction and glucose output induced by U46619 were almost completely prevented, whereas glucose output induced by the directly acting PGF(2alpha) was only slightly lowered. Thus, in the perfused rat liver PGs released after C5a-stimulation from KCs and HSCs directly activated glycogen phosphorylase in HCs, and TXA(2) enhanced glucose output indirectly mainly by causing hypoxia as a result of flow reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.