Abstract

In this paper, a large displacement and finite rotation thin-walled beam element previously developed by the authors, which accounts for cross-section deformation, is extended by including finite relative rotations of the beam walls in the in-plane kinematic description of the cross-sections. The inclusion of these relative rotations is motivated by the fact that it enables a simple and meaningful representation of the cross-section in-plane distortion and allows for a co-rotational description of the wall "local-plate" behavior, which leads to a computationally efficient numerical implementation. The present extension preserves all features of the original formulation, namely the geometrically exact description of the beam mid-surface and the allowance for arbitrary cross-section deformation modes complying with Kirchhoff's assumption. The efficiency of the resulting beam finite element is demonstrated by means of numerical examples, which include comparisons with solutions obtained by means of the previous beam finite element and standard shell finite elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.