Abstract

AbstractWe report a novel strategy for incorporation of titanium dioxide (TiO2) particles into poly(methyl methacrylate) (PMMA) to exploit high refractive and transparent organic–inorganic hybrid materials. Formation of TiO2 particles of around 20 nm was conducted within hydrophilic core of block copolymer micelles of poly(methyl methacrylate‐block‐acrylic acid) (PMMA‐b‐PAA) in toluene via sol–gel process from titanium isopropoxide and hydrochloric acid. Subsequently, incorporation of TiO2 particles into PMMA matrix was carried out by casting toluene solution of TiO2 precursor‐loaded copolymer micelles, prepared from PMMA350‐b‐PAA93 and the precursor of mole ratio Ti4+/carboxyl 4.0, and PMMA. Hybrid films of TiO2/PMMA exhibited high transparency to achieve transmission over 87% at 500 nm at 30 wt % of TiO2 content. The refractive index of resulting hybrid films at 633 nm linearly increased with TiO2 content to attain 1.579 at 30 wt % TiO2, which was 0.1 higher than that of PMMA. Cross‐sectional transmission electron microscope images of TiO2/PMMA hybrid films showed existence of TiO2 clusters less than 100 nm, which were probably formed by aggregation or agglutination of TiO2 particles during a drying process. It was also observed that decomposition temperature of the hybrid films elevated with increasing TiO2 content. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.