Abstract
In this study, the Halloysite nanotubes (HNTs) are surface-functionalized with sodium alginate (Sod.alg) and poly (vinyl alcohol) (PVA) were employed to generate nanocomposite films (Sod.alg-rHNT/PVA). These nanocomposite films were made via the solution casting technique. FE-SEM data verified sod.alg-rHNT dispersion into the PVA matrix. The modifications were confirmed from FTIR, TGA and PXRD techniques. In the mechanical studies of synthesized nanocomposite films, the films showed a considerable increase in the tensile strength and Young's modulus values. The nanocomposite film's ability to induce cell proliferation and migration was investigated using murine fibroblast (NIH3T3) cells. The films increased cellular proliferation (128 ± 1.07 %) compared to the neat PVA. Cell adhesion tests showed cytocompliant films. In the scratch assay, the 5 wt% film elicited wound closure at a faster rate (91.53 ± 1.04 %). Films were compatible with human blood cells. Therefore the prepared nanocomposite films can be used as promising wound healers after pre-clinical and clinical testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.