Abstract

Quartz and iron (hydr)oxide are reactive surface phases that are often associated with one another in soils and sediments. Despite the several studies on the coating of quartz with iron oxides, the reactivity of dissolved species (Si) leached from quartz with iron (hydr)oxides has received limited attention. In this study, goethite synthesized on quartz substrates were characterized using field emission scanning electron microscopy, X-ray diffraction (XRD), transmission electron microscopy, and Fourier-transform infrared (FT-IR) spectroscopy. The SEM characterization revealed that bundles of thin parallel aligned goethite rods were formed at pH > 10, while large pseudohexagonal crystals of twinned goethite needles were synthesized at pH ≤ 10 after dehydration and hydration in the alkaline media. TEM analysis showed expanded and distorted lattice spacing of the crystal structure of iron (hydr)oxide due to silica incorporation. The characterization showed that silica increased the crystallite size of the goethite and transformed its acicular texture to a larger, twinned needle structure. FT-IR and XRD analyses revealed band shifts in crystal bonds as well as new bond formations, which indicate the presence of changes in the chemical environment of Fe–O and Si–O bonds. Thus, the presence of sorbed silicates modifies the crystal and lattice structure of goethite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.