Abstract
Ship motion has significant effects on certain maritime applications like offshore crane operation. In particular, the vertical heave motion is undesired for safe transferring, accurate positioning and subsea installation. In recent years, there have been growing tasks in utilizing ship motion data for online operation improvement based on the development of virtual simulation environment, digital twin and automatic remote-control systems. How to effectively utilize ship motion data is fundamental to these tasks. This paper presents a neural-network-based method to predict ship motion and use the prediction to improve active heave compensation (AHC) of offshore crane operation. A virtual prototype of the lifting system is developed including implementation of the proposed AHC algorithms. A multilayer perceptron model is trained to predict ship motion. By feeding the future motion of the ship into the controller, the lifting performance can be tested in the virtual environment and the result can be applied to its counterpart. Through simulation with measured sensor data, the proposed method is verified efficient in improving crane operation performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.