Abstract
In order to achieve reliable but cost-effective crash simulations of stamped parts, sheet-forming process effects were incorporated in simulations using the ideal forming theory mixed with the three-dimensional hybrid membrane and shell method, while the subsequent crash simulations were carried out using a dynamic explicit finite element code. Example solutions performed for forming and crash simulations of I- and S-shaped rails verified that the proposed approach is cost effective without sacrificing accuracy. The method required a significantly small amount of additional computation time, less than 3% for the specific examples, to incorporate sheet-forming effects into crash simulations. As for the constitutive equation, the combined isotropic-kinematic hardening law and the nonquadratic anisotropic yield stress potential as well as its conjugate strain-rate potential were used to describe the anisotropy of AA6111-T4 aluminum alloy sheets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.