Abstract

Real-time (RT)-PCR increases diagnostic yield for bacterial meningitis and is ideal for incorporation into routine surveillance in a developing country. We validated a multiplex RT-PCR assay for Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae in Brazil. Risk factors for being culture-negative, RT-PCR positive were determined. The sensitivity of RT-PCR in cerebrospinal fluid (CSF) was 100% (95% confidence limits, 96.0%–100%) for N. meningitidis, 97.8% (85.5%–99.9%) for S. pneumoniae, and 66.7% (9.4%–99.2%) for H. influenzae. Specificity ranged from 98.9% to 100%. Addition of RT-PCR to routine microbiologic methods increased the yield for detection of S. pneumoniae, N. meningitidis, and H. influenzae cases by 52%, 85%, and 20%, respectively. The main risk factor for being culture negative and RT-PCR positive was presence of antibiotic in CSF (odds ratio 12.2, 95% CI 5.9-25.0). RT-PCR using CSF was highly sensitive and specific and substantially added to measures of meningitis disease burden when incorporated into routine public health surveillance in Brazil.

Highlights

  • Bacterial meningitis is a serious and often fatal infection

  • Laboratory validation of RT-PCR assay All N. meningitidis, H. influenzae and S. pneumoniae used in the evaluation of sensitivity of the RT-PCR assays were positive in the species-specific assay targeting the ctrA, bexA and lytA genes, respectively

  • We found that RT-PCR, when incorporated into routine public health surveillance performed well and added substantially to estimates of public health burden for N. meningitidis and S. pneumoniae

Read more

Summary

Introduction

Bacterial meningitis is a serious and often fatal infection. Understanding the burden of bacterial meningitis is important because of recent advances in vaccines for these infections. Hib conjugate vaccines have led to the near disappearance of invasive Hib disease in Brazil and elsewhere [1]. Availability of overthe-counter antibiotics, administration of antibiotics before performance of lumbar puncture, lack of microbiology resources for bacterial culture, and variable quality of microbiology services are among the reasons for culture negativity. This problem leads to an underestimate of disease burden and assessments of the potential impact of vaccination. Non-culture methods, such as real-time (RT)-PCR, can increase the diagnostic yield for bacterial meningitis in both developed and developing countries [4,5,6,7,8,9,10]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.