Abstract

Utilization of electronic health records data to derive predictive indexes such as the electronic Child-Turcotte-Pugh (eCTP) Score can have significant utility in health care delivery. Within the records, CT scans contain phenotypic data which have significant prognostic value. However, data extractions have not traditionally been applied to imaging data. In this study, we used artificial intelligence to automate biomarker extraction from CT scans and examined the value of these features in improving risk prediction in patients with liver disease. Using a regional liver disease cohort from the Veterans Health System, we retrieved administrative, laboratory, and clinical data for Veterans who had CT scans performed for any clinical indication between 2008 and 2014. Imaging biomarkers were automatically derived using the analytic morphomics platform. In all, 4614 patients were included. We found that the eCTP Score had a Concordance index of 0.64 for the prediction of overall mortality while the imaging-based model alone or with eCTP Score performed significantly better [Concordance index of 0.72 and 0.73 ( p <0.001)]. For the subset of patients without hepatic decompensation at baseline (n=4452), the Concordance index for predicting future decompensation was 0.67, 0.79, and 0.80 for eCTP Score, imaging alone, or combined, respectively. This proof of concept demonstrates that the potential of utilizing automated extraction of imaging features within CT scans either alone or in conjunction with classic health data can improve risk prediction in patients with chronic liver disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.