Abstract

Delivery of neuropeptides into the central and/or peripheral nervous systems supports development of novel neurotherapeutics for the treatment of pain, epilepsy and other neurological diseases. Our previous work showed that the combination of lipidization and cationization applied to anticonvulsant neuropeptides galanin (GAL) and neuropeptide Y (NPY) improved their penetration across the blood-brain barrier yielding potent antiepileptic lead compounds, such as Gal-B2 (NAX 5055) or NPY-B2. To dissect peripheral and central actions of anticonvulsant neuropeptides, we rationally designed, synthesized and characterized GAL and NPY analogues containing monodisperse (discrete) oligoethyleneglycol-lysine (dPEG-Lys). The dPEGylated analogues Gal-B2-dPEG(24), Gal-R2-dPEG(24) and NPY-dPEG(24) displayed analgesic activities following systemic administration, while avoiding penetration into the brain. Gal-B2-dPEG(24) was synthesized by a stepwise deprotection of orthogonal 4-methoxytrityl and allyloxycarbonyl groups, and subsequent on-resin conjugations of dPEG(24) and palmitic acids, respectively. All the dPEGylated analogues exhibited substantially decreased hydrophobicity (expressed as logD values), increased in vitro serum stabilities and pronounced analgesia in the formalin and carrageenan inflammatory pain assays following systemic administration, while lacking apparent antiseizure activities. These results suggest that discrete PEGylation of neuropeptides offers an attractive strategy for developing neurotherapeutics with restricted penetration into the central nervous system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.