Abstract

Incorporation of [methyl-3H]thymidine into bacterial DNA was determined for a range of axenic anaerobic bacterial cultures: fermentative heterotrophs, sulphate-reducing bacteria, purple sulphur bacteria, acetogens and methanogens. Anaerobically growing Bacillus sp. and the obligate aerobe Thiobacillus ferrooxidans were also investigated. Actively growing cultures of sulphate-reducing bacteria belonging to the genera Desulfovibrio, Desulfotomaculum, Desulfobacter, Desulfobotulus and Desulfobulbus, purple sulphur bacteria (Chromatium vinosum OP2 and Thiocapsa roseopersicina OP1), methanogens (Methanococcus GS16 and Methanosarcina barkeri) and an acetogen (Acetobacterium woodii) did not incorporate [methyl-3H]thymidine into DNA. The only obligate anaerobes in which thymidine incorporation into DNA could be unequivocally demonstrated were members of the genus Clostridium. Anaerobically growing Bacillus sp. also incorporated thymidine. These data demonstrate that pure culture representatives of major groups of anaerobic bacteria involved in the terminal oxidation of organic carbon and anoxygenic phototrophs within sediments are unable to incorporate [methyl-3H]thymidine into DNA, although some obligate and facultative anaerobes can. Variability in thymidine incorporation amongst pure culture isolates indicates that unless existing techniques can be calibrated to take this into consideration then productivity estimates in both aerobic and anaerobic environments may be greatly underestimated using the [methyl-3H]thymidine technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.