Abstract

We have studied the formation of Li extrinsic defects in CuZnSnSe by first-principles hybrid functional calculations. Li atoms in the Cu site (Li) and Li atoms in the Se site (Li) are the most and the least stable point defect, respectively. The formation energies of two Li interstitial defects with different numbers of nearest neighbors are the same. These interstitial point defects act as a donor but do not create gap states. Formation of the acceptor point defects (Li and Li) is less likely in p-type CuZnSnSe compared with n-type CuZnSnSe. In contrast to Li which does not create gap states, the formation of Li creates two charge transition levels in the middle of the bandgap which might act as recombination centers. (Li–Li) dumbbells are likely to form in p-type CuZnSnSe but the probability of the formation of dumbbells decreases in favor of the formation of two Li point defects when the chemical potential of the electrons increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.