Abstract

Abstract Benthic foraminifera are valuable indicators in environmental studies, including those on marine pollution monitoring. While a great deal of foraminiferal biomonitoring research utilizes abundance and distributional data, further value resides in better understanding the incorporation of heavy metal pollutants in foraminiferal calcite. By experimentally growing assemblages of foraminifera from propagules (small juveniles) gathered from Sapelo Island, Georgia and Little Duck Key, Florida, this study examines foraminiferal incorporation of the heavy metals arsenic, cadmium, nickel, and zinc over a range of concentrations. Surface sediment was collected and sieved to concentrate the propagules. The propagules were then used to experimentally grow assemblages with each exposed to a different heavy metal. After one month, the experimentally grown foraminifera were harvested and samples of the two most common species from each location, Ammonia tepida (Cushman) and Haynesina germanica (Ehrenberg) from Sapelo Island and Quinqueloculina sabulosa (Cushman) and Triloculina oblonga (Montagu) from Little Duck Key, were selected for trace element analysis. Calcite of the tests was analyzed using LA-ICP-MS to quantify the heavy metal incorporation. Rotalid species A. tepida and H. germanica incorporated more cadmium as its concentration in the surrounding water increased, whereas miliolid species Q. sabulosa and T. oblonga incorporated more of the metals zinc and nickel. This study shows that while foraminiferal incorporation of heavy metals has great potential as a biomonitoring tool, multiple factors (especially inter-clade variation) must be considered carefully. In future marine environmental research, these factors may help to create a more targeted assessment of environmental pollution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.