Abstract

A tryptophan-requiring strain of Escherichia coli can go through two doublings of optical density after L-tryptophan is replaced in the medium by 4-fluorotryptophan, during which the fluoro analog displaces approximately 75% of the L-tryptophan in cell protein. One doubling occurs in the presence of 5- or 6-fluorotryptophan, with 50-60% replacement of L-tryptophan by analog. When beta-galactosidase is induced at the time of addition of analog, it reaches 60% of the control specific activity in the presence of 4-fluorotryptophan, 10% of normal in the presence of 5- or 6-fluorotryptophan. Lactose permease activity is 35% of the control in the presence of 4- and 6-fluorotryptophan, less than 10% in the presence of 5-fluorotryptophan. D-Lactate dehydrogenase shows a specific activity twice that of the control in the presence of 4-fluorotryptophan, one-half with 5- or 6-fluorotryptophan. Thus fluorotryptophan can be incorporated into proteins and affect their activities, although the nature and magnitude of the effect cannot be predicted for any given enzyme. Such substituted proteins should be useful for the study of protein structure and function by 19F nuclear magnetic resonance and other techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.