Abstract

Fluorescent particles are of particular interest as probes and active agents for biomedical, pharmaceutical, and food applications. Here, we present two strategies for incorporation of core-shell acrylic fluorescent nanoparticles (NPs) with Rhodamine B (RhB) as a dye into a chitosan (CS) matrix. We selected two variants of NPsRhB immobilisation in a CS membrane and biopolymeric CS beads. Modification of the method for production of the biopolymer cover/transporter of nanoparticles allowed two series of hydrogels loaded with nanoparticles to be obtained with a similar concentration of the aqueous solution of the nanoparticles. Microscopic analysis showed that the NPs were nonuniformly distributed in millimetre-sized CS beads, as well as membranes, but the fluorescence signal was strong. The composition of CS layers loaded with nanoparticles (CS/NPsRhB) showed water vapour barrier properties, characterised by the contact angle of 71.8°. Finally, we incorporated NPsRhBCS beads into a gelatine matrix to check their stability. The results confirmed good stability of the NPsRhBCS complex system, and no dye leakage was observed from the beads and the membranes. The proposed complex system demonstrated promising potential for further use in bioimaging and, thus, for the development of advanced diagnostic tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.