Abstract

Spin coating and successive ionic layer adsorption and reaction (SILAR) method were adopted to deposit commercial TiO2 (Degussa-P25), un-dopedCdS and Co2+-doped CdS quantum dots (QDs). Characteristic peak for CdS, TiO2and FTO were observed in powder X-ray diffraction pattern of the prepared samples. Co2+-doping was confirmed through energy dispersive X-ray spectroscopy and elemental mapping analysis. Spherical shaped morphology was observed in field emission scanning electron microscopy (FE-SEM). Measured size of CdS is ~8 nm and the TiO2 is ~20 nm through HR-TEM imaging. The maximum absorption range was observed as 570 nm for 3% Co2+-doped CdS QDs. Power conversion efficiency of un-doped CdS and 3% Co2+-doped CdS QDs were 0.54% and 1.21% respectively. It indicated that up to 3% Co2+-doping in CdS QDs leads to remarkable enhancement in the optical absorption, absorption range and photovoltaic performance under chosen experimental conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call