Abstract

This study reports on the production of chitosan-based composite scaffolds reinforced with hydroxyapatite (HA) powders prepared with cerium oxide (CeO2) with various concentrations (10, 20, 30 wt.%). Besides, the effect of CeO2 additive on the microstructural,mechanical and bioactivity properties of the composite scaffolds was investigated. The CeO2 reinforced HA powders were synthesized having homogenous particle distribution via spray drying process. The synthesized powders and the produced scaffolds were examined using different characterization methods. From the results, it can be seen that the scaffolds were significantly affected by amount of CeO2 additive. An increase in the compressive strength is observed as the amount of CeO2 additive rises. Furthermore, the composite scaffolds possessed a high mineralization ability of apatite in simulated body fluid (SBF). These observations related to the composite scaffolds have considerable potency for application in bone tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.